Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
P
Python-100-Days
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
huangkq
Python-100-Days
Commits
0f19b236
Commit
0f19b236
authored
Jun 03, 2018
by
jackfrued
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
更新了Scrapy的相关文档
parent
9385d438
Changes
6
Show whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
265 additions
and
4 deletions
+265
-4
05.解析动态内容.md
Day66-75/05.解析动态内容.md
+12
-0
06.表单交互和验证码处理.md
Day66-75/06.表单交互和验证码处理.md
+34
-0
Scrapy的应用01.md
Day66-75/Scrapy的应用01.md
+219
-4
scrapy-architecture.jpg
Day66-75/res/scrapy-architecture.jpg
+0
-0
scrapy-architecture.png
Day66-75/res/scrapy-architecture.png
+0
-0
tesseract.gif
Day66-75/res/tesseract.gif
+0
-0
No files found.
Day66-75/05.解析动态内容.md
View file @
0f19b236
## 解析动态内容
### JavaScript逆向工程
### 使用Selenium
Day66-75/06.表单交互和验证码处理.md
View file @
0f19b236
## 表单交互和验证码处理
### 提交表单
#### 手动提交
#### 自动提交
### 验证码处理
#### 加载验证码
#### 光学字符识别
光学字符识别(OCR)是从图像中抽取文本的工具,可以应用于公安、电信、物流、金融等诸多行业,例如识别车牌,身份证扫描识别、名片信息提取等。在爬虫开发中,如果遭遇了有文字验证码的表单,就可以利用OCR来进行验证码处理。Tesseract-OCR引擎最初是由惠普公司开发的光学字符识别系统,目前发布在Github上,由Google赞助开发。
![](
./res/tesseract.gif
)
#### 改善OCR
#### 处理更复杂的验证码
#### 验证码处理服务
Day66-75/Scrapy的应用01.md
View file @
0f19b236
...
...
@@ -2,9 +2,9 @@
### Scrapy概述
Scrapy是Python开发的一个非常流行的网络爬虫框架,可以用来抓取Web站点并从页面中提取结构化的数据,被广泛的用于数据挖掘、数据监测和自动化测试等领域。下图展示了Scrapy的基本架构,其中包含了主要组件和系统的数据处理流程(图中
的绿
色箭头)。
Scrapy是Python开发的一个非常流行的网络爬虫框架,可以用来抓取Web站点并从页面中提取结构化的数据,被广泛的用于数据挖掘、数据监测和自动化测试等领域。下图展示了Scrapy的基本架构,其中包含了主要组件和系统的数据处理流程(图中
带数字的红
色箭头)。
![](
./res/scrapy-architecture.
jp
g
)
![](
./res/scrapy-architecture.
pn
g
)
#### 组件
...
...
@@ -20,14 +20,22 @@ Scrapy是Python开发的一个非常流行的网络爬虫框架,可以用来
Scrapy的整个数据处理流程由Scrapy引擎进行控制,通常的运转流程包括以下的步骤:
1.
引擎询问蜘蛛需要处理哪个网站,并让蜘蛛将第一个需要处理的URL交给它。
2.
引擎让调度器将需要处理的URL放在队列中。
3.
引擎从调度那获取接下来进行爬取的页面。
4.
调度将下一个爬取的URL返回给引擎,引擎将它通过下载中间件发送到下载器。
5.
当网页被下载器下载完成以后,响应内容通过下载中间件被发送到引擎;如果下载失败了,引擎会通知调度器记录这个URL,待会再重新下载。
6.
引擎收到下载器的响应并将它通过蜘蛛中间件发送到蜘蛛进行处理。
7.
蜘蛛处理响应并返回爬取到的数据条目,此外还要将需要跟进的新的URL发送给引擎。
8.
引擎将抓取到的数据条目送入条目管道,把新的URL发送给调度器放入队列中。
9.
上述操作会一直重复直到调度器中没有需要请求的URL,爬虫停止工作。
上述操作中的2-8步会一直重复直到调度器中没有需要请求的URL,爬虫停止工作。
### 安装和使用Scrapy
...
...
@@ -45,7 +53,7 @@ $
(venv) $ tree
.
|____ scrapy.cfg
|____
qianmu
|____
douban
| |____ spiders
| | |____ __init__.py
| | |____ __pycache__
...
...
@@ -68,9 +76,216 @@ $
根据刚才描述的数据处理流程,基本上需要我们做的有以下几件事情:
1.
在items.py文件中定义字段,这些字段用来保存数据,方便后续的操作。
```Python
# -*- coding: utf-8 -*-
# Define here the models for your scraped items
#
# See documentation in:
# https://doc.scrapy.org/en/latest/topics/items.html
import scrapy
class DoubanItem(scrapy.Item):
name = scrapy.Field()
year = scrapy.Field()
score = scrapy.Field()
director = scrapy.Field()
classification = scrapy.Field()
actor = scrapy.Field()
```
2.
在spiders文件夹中编写自己的爬虫。
```Python
# -*- coding: utf-8 -*-
import scrapy
from scrapy.selector import Selector
from scrapy.linkextractors import LinkExtractor
from scrapy.spiders import CrawlSpider, Rule
from douban.items import DoubanItem
class MovieSpider(CrawlSpider):
name = 'movie'
allowed_domains = ['movie.douban.com']
start_urls = ['https://movie.douban.com/top250']
rules = (
Rule(LinkExtractor(allow=(r'https://movie.douban.com/top250\?start=\d+.*'))),
Rule(LinkExtractor(allow=(r'https://movie.douban.com/subject/\d+')), callback='parse_item'),
)
def parse_item(self, response):
sel = Selector(response)
item = DoubanItem()
item['name']=sel.xpath('//*[@id="content"]/h1/span[1]/text()').extract()
item['year']=sel.xpath('//*[@id="content"]/h1/span[2]/text()').re(r'\((\d+)\)')
item['score']=sel.xpath('//*[@id="interest_sectl"]/div/p[1]/strong/text()').extract()
item['director']=sel.xpath('//*[@id="info"]/span[1]/a/text()').extract()
item['classification']= sel.xpath('//span[@property="v:genre"]/text()').extract()
item['actor']= sel.xpath('//*[@id="info"]/span[3]/a[1]/text()').extract()
return item
```
3.
在pipelines.py中完成对数据进行持久化的操作。
```Python
# -*- coding: utf-8 -*-
# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html
import pymongo
from scrapy.exceptions import DropItem
from scrapy.conf import settings
from scrapy import log
class DoubanPipeline(object):
def __init__(self):
connection = pymongo.MongoClient(settings['MONGODB_SERVER'], settings['MONGODB_PORT'])
db = connection[settings['MONGODB_DB']]
self.collection = db[settings['MONGODB_COLLECTION']]
def process_item(self, item, spider):
#Remove invalid data
valid = True
for data in item:
if not data:
valid = False
raise DropItem("Missing %s of blogpost from %s" %(data, item['url']))
if valid:
#Insert data into database
new_moive=[{
"name":item['name'][0],
"year":item['year'][0],
"score":item['score'],
"director":item['director'],
"classification":item['classification'],
"actor":item['actor']
}]
self.collection.insert(new_moive)
log.msg("Item wrote to MongoDB database %s/%s" %
(settings['MONGODB_DB'], settings['MONGODB_COLLECTION']),
level=log.DEBUG, spider=spider)
return item
```
4.
修改settings.py文件对项目进行配置。
```Python
# -*- coding: utf-8 -*-
# Scrapy settings for douban project
#
# For simplicity, this file contains only settings considered important or
# commonly used. You can find more settings consulting the documentation:
#
# https://doc.scrapy.org/en/latest/topics/settings.html
# https://doc.scrapy.org/en/latest/topics/downloader-middleware.html
# https://doc.scrapy.org/en/latest/topics/spider-middleware.html
BOT_NAME = 'douban'
SPIDER_MODULES = ['douban.spiders']
NEWSPIDER_MODULE = 'douban.spiders'
# Crawl responsibly by identifying yourself (and your website) on the user-agent
USER_AGENT = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_3) AppleWebKit/536.5 (KHTML, like Gecko) Chrome/19.0.1084.54 Safari/536.5'
# Obey robots.txt rules
ROBOTSTXT_OBEY = True
# Configure maximum concurrent requests performed by Scrapy (default: 16)
# CONCURRENT_REQUESTS = 32
# Configure a delay for requests for the same website (default: 0)
# See https://doc.scrapy.org/en/latest/topics/settings.html#download-delay
# See also autothrottle settings and docs
DOWNLOAD_DELAY = 3
RANDOMIZE_DOWNLOAD_DELAY = True
# The download delay setting will honor only one of:
# CONCURRENT_REQUESTS_PER_DOMAIN = 16
# CONCURRENT_REQUESTS_PER_IP = 16
# Disable cookies (enabled by default)
COOKIES_ENABLED = True
MONGODB_SERVER = '120.77.222.217'
MONGODB_PORT = 27017
MONGODB_DB = 'douban'
MONGODB_COLLECTION = 'movie'
# Disable Telnet Console (enabled by default)
# TELNETCONSOLE_ENABLED = False
# Override the default request headers:
# DEFAULT_REQUEST_HEADERS = {
# 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
# 'Accept-Language': 'en',
# }
# Enable or disable spider middlewares
# See https://doc.scrapy.org/en/latest/topics/spider-middleware.html
# SPIDER_MIDDLEWARES = {
# 'douban.middlewares.DoubanSpiderMiddleware': 543,
# }
# Enable or disable downloader middlewares
# See https://doc.scrapy.org/en/latest/topics/downloader-middleware.html
# DOWNLOADER_MIDDLEWARES = {
# 'douban.middlewares.DoubanDownloaderMiddleware': 543,
# }
# Enable or disable extensions
# See https://doc.scrapy.org/en/latest/topics/extensions.html
# EXTENSIONS = {
# 'scrapy.extensions.telnet.TelnetConsole': None,
# }
# Configure item pipelines
# See https://doc.scrapy.org/en/latest/topics/item-pipeline.html
ITEM_PIPELINES = {
'douban.pipelines.DoubanPipeline': 400,
}
LOG_LEVEL = 'DEBUG'
# Enable and configure the AutoThrottle extension (disabled by default)
# See https://doc.scrapy.org/en/latest/topics/autothrottle.html
#AUTOTHROTTLE_ENABLED = True
# The initial download delay
#AUTOTHROTTLE_START_DELAY = 5
# The maximum download delay to be set in case of high latencies
#AUTOTHROTTLE_MAX_DELAY = 60
# The average number of requests Scrapy should be sending in parallel to
# each remote server
#AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0
# Enable showing throttling stats for every response received:
#AUTOTHROTTLE_DEBUG = False
# Enable and configure HTTP caching (disabled by default)
# See https://doc.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings
HTTPCACHE_ENABLED = True
HTTPCACHE_EXPIRATION_SECS = 0
HTTPCACHE_DIR = 'httpcache'
HTTPCACHE_IGNORE_HTTP_CODES = []
HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'
```
Day66-75/res/scrapy-architecture.jpg
deleted
100644 → 0
View file @
9385d438
54.5 KB
Day66-75/res/scrapy-architecture.png
0 → 100644
View file @
0f19b236
52.7 KB
Day66-75/res/tesseract.gif
0 → 100644
View file @
0f19b236
791 KB
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment