{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "\n", "import pandas as pd\n", "\n", "from pandas import Series,DataFrame" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": true }, "outputs": [ { "data": { "text/plain": [ "10 34\n", "11 111\n", "12 113\n", "13 103\n", "14 147\n", "15 63\n", "16 11\n", "17 130\n", "18 38\n", "19 17\n", "20 32\n", "21 112\n", "22 75\n", "23 68\n", "24 124\n", "25 138\n", "26 56\n", "27 1\n", "28 88\n", "29 113\n", "30 63\n", "31 42\n", "32 65\n", "33 104\n", "34 105\n", "35 0\n", "36 95\n", "37 119\n", "38 86\n", "39 124\n", " ... \n", "80 127\n", "81 139\n", "82 110\n", "83 65\n", "84 127\n", "85 108\n", "86 33\n", "87 91\n", "88 134\n", "89 65\n", "90 110\n", "91 144\n", "92 40\n", "93 3\n", "94 3\n", "95 59\n", "96 97\n", "97 64\n", "98 126\n", "99 94\n", "100 20\n", "101 107\n", "102 59\n", "103 146\n", "104 83\n", "105 59\n", "106 25\n", "107 0\n", "108 78\n", "109 93\n", "Name: Python, Length: 100, dtype: int16" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "s = Series(np.random.randint(0,150,size = 100),index = np.arange(10,110),dtype=np.int16,name = 'Python')\n", "s" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [ { "ename": "KeyError", "evalue": "0", "output_type": "error", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mKeyError\u001b[0m Traceback (most recent call last)", "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[1;31m# 索引操作\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 2\u001b[1;33m \u001b[0ms\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[1;32md:\\python36\\lib\\site-packages\\pandas\\core\\series.py\u001b[0m in \u001b[0;36m__getitem__\u001b[1;34m(self, key)\u001b[0m\n\u001b[0;32m 866\u001b[0m \u001b[0mkey\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mcom\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mapply_if_callable\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 867\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 868\u001b[1;33m \u001b[0mresult\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mindex\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_value\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mkey\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 869\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 870\u001b[0m \u001b[1;32mif\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0mis_scalar\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mresult\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32md:\\python36\\lib\\site-packages\\pandas\\core\\indexes\\base.py\u001b[0m in \u001b[0;36mget_value\u001b[1;34m(self, series, key)\u001b[0m\n\u001b[0;32m 4373\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4374\u001b[0m return self._engine.get_value(s, k,\n\u001b[1;32m-> 4375\u001b[1;33m tz=getattr(series.dtype, 'tz', None))\n\u001b[0m\u001b[0;32m 4376\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0me1\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4377\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;33m>\u001b[0m \u001b[1;36m0\u001b[0m \u001b[1;32mand\u001b[0m \u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mholds_integer\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32mor\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mis_boolean\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32mpandas\\_libs\\index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_value\u001b[1;34m()\u001b[0m\n", "\u001b[1;32mpandas\\_libs\\index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_value\u001b[1;34m()\u001b[0m\n", "\u001b[1;32mpandas\\_libs\\index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[1;34m()\u001b[0m\n", "\u001b[1;32mpandas\\_libs\\hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.Int64HashTable.get_item\u001b[1;34m()\u001b[0m\n", "\u001b[1;32mpandas\\_libs\\hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.Int64HashTable.get_item\u001b[1;34m()\u001b[0m\n", "\u001b[1;31mKeyError\u001b[0m: 0" ] } ], "source": [ "# 索引操作\n", "s[0]" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "34" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "s[10]" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true }, "outputs": [ { "data": { "text/plain": [ "10 34\n", "20 32\n", "Name: Python, dtype: int16" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "s[[10,20]]" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": true }, "outputs": [ { "data": { "text/plain": [ "20 32\n", "21 112\n", "22 75\n", "23 68\n", "24 124\n", "25 138\n", "26 56\n", "27 1\n", "28 88\n", "29 113\n", "Name: Python, dtype: int16" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# 切片操作\n", "s[10:20]" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true }, "outputs": [ { "data": { "text/plain": [ "10 34\n", "12 113\n", "14 147\n", "16 11\n", "18 38\n", "20 32\n", "22 75\n", "24 124\n", "26 56\n", "28 88\n", "30 63\n", "32 65\n", "34 105\n", "36 95\n", "38 86\n", "40 6\n", "42 57\n", "44 72\n", "46 43\n", "48 87\n", "50 83\n", "52 99\n", "54 132\n", "56 17\n", "58 116\n", "60 33\n", "62 51\n", "64 80\n", "66 121\n", "68 81\n", "70 0\n", "72 50\n", "74 31\n", "76 114\n", "78 60\n", "80 127\n", "82 110\n", "84 127\n", "86 33\n", "88 134\n", "90 110\n", "92 40\n", "94 3\n", "96 97\n", "98 126\n", "100 20\n", "102 59\n", "104 83\n", "106 25\n", "108 78\n", "Name: Python, dtype: int16" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "s[::2]" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true }, "outputs": [ { "data": { "text/plain": [ "109 93\n", "107 0\n", "105 59\n", "103 146\n", "101 107\n", "99 94\n", "97 64\n", "95 59\n", "93 3\n", "91 144\n", "89 65\n", "87 91\n", "85 108\n", "83 65\n", "81 139\n", "79 14\n", "77 96\n", "75 76\n", "73 29\n", "71 68\n", "69 4\n", "67 57\n", "65 58\n", "63 106\n", "61 42\n", "59 135\n", "57 56\n", "55 12\n", "53 135\n", "51 74\n", "49 129\n", "47 110\n", "45 1\n", "43 90\n", "41 120\n", "39 124\n", "37 119\n", "35 0\n", "33 104\n", "31 42\n", "29 113\n", "27 1\n", "25 138\n", "23 68\n", "21 112\n", "19 17\n", "17 130\n", "15 63\n", "13 103\n", "11 111\n", "Name: Python, dtype: int16" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "s[::-2]" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "34" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# 可以使用pandas为开发者提供方法,去进行检索\n", "s.loc[10]" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "10 34\n", "20 32\n", "Name: Python, dtype: int16" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "s.loc[[10,20]]" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": true }, "outputs": [ { "data": { "text/plain": [ "10 34\n", "11 111\n", "12 113\n", "13 103\n", "14 147\n", "15 63\n", "16 11\n", "17 130\n", "18 38\n", "19 17\n", "20 32\n", "Name: Python, dtype: int16" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "s.loc[10:20]" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "collapsed": true }, "outputs": [ { "data": { "text/plain": [ "10 34\n", "12 113\n", "14 147\n", "16 11\n", "18 38\n", "20 32\n", "22 75\n", "24 124\n", "26 56\n", "28 88\n", "30 63\n", "32 65\n", "34 105\n", "36 95\n", "38 86\n", "40 6\n", "42 57\n", "44 72\n", "46 43\n", "48 87\n", "50 83\n", "52 99\n", "54 132\n", "56 17\n", "58 116\n", "60 33\n", "62 51\n", "64 80\n", "66 121\n", "68 81\n", "70 0\n", "72 50\n", "74 31\n", "76 114\n", "78 60\n", "80 127\n", "82 110\n", "84 127\n", "86 33\n", "88 134\n", "90 110\n", "92 40\n", "94 3\n", "96 97\n", "98 126\n", "100 20\n", "102 59\n", "104 83\n", "106 25\n", "108 78\n", "Name: Python, dtype: int16" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "s.loc[::2]" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": true }, "outputs": [ { "data": { "text/plain": [ "109 93\n", "107 0\n", "105 59\n", "103 146\n", "101 107\n", "99 94\n", "97 64\n", "95 59\n", "93 3\n", "91 144\n", "89 65\n", "87 91\n", "85 108\n", "83 65\n", "81 139\n", "79 14\n", "77 96\n", "75 76\n", "73 29\n", "71 68\n", "69 4\n", "67 57\n", "65 58\n", "63 106\n", "61 42\n", "59 135\n", "57 56\n", "55 12\n", "53 135\n", "51 74\n", "49 129\n", "47 110\n", "45 1\n", "43 90\n", "41 120\n", "39 124\n", "37 119\n", "35 0\n", "33 104\n", "31 42\n", "29 113\n", "27 1\n", "25 138\n", "23 68\n", "21 112\n", "19 17\n", "17 130\n", "15 63\n", "13 103\n", "11 111\n", "Name: Python, dtype: int16" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "s.loc[::-2]" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Int64Index([ 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,\n", " 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,\n", " 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,\n", " 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,\n", " 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,\n", " 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87,\n", " 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,\n", " 101, 102, 103, 104, 105, 106, 107, 108, 109],\n", " dtype='int64')" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "s.index" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "34" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# iloc 索引从0开始,数字化自然索引\n", "s.iloc[0]" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "10 34\n", "20 32\n", "Name: Python, dtype: int16" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "s.iloc[[0,10]]" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": true }, "outputs": [ { "data": { "text/plain": [ "10 34\n", "11 111\n", "12 113\n", "13 103\n", "14 147\n", "15 63\n", "16 11\n", "17 130\n", "18 38\n", "19 17\n", "20 32\n", "21 112\n", "22 75\n", "23 68\n", "24 124\n", "25 138\n", "26 56\n", "27 1\n", "28 88\n", "29 113\n", "Name: Python, dtype: int16" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "s.iloc[0:20]" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": true }, "outputs": [ { "data": { "text/plain": [ "109 93\n", "107 0\n", "105 59\n", "103 146\n", "101 107\n", "99 94\n", "97 64\n", "95 59\n", "93 3\n", "91 144\n", "89 65\n", "87 91\n", "85 108\n", "83 65\n", "81 139\n", "79 14\n", "77 96\n", "75 76\n", "73 29\n", "71 68\n", "69 4\n", "67 57\n", "65 58\n", "63 106\n", "61 42\n", "59 135\n", "57 56\n", "55 12\n", "53 135\n", "51 74\n", "49 129\n", "47 110\n", "45 1\n", "43 90\n", "41 120\n", "39 124\n", "37 119\n", "35 0\n", "33 104\n", "31 42\n", "29 113\n", "27 1\n", "25 138\n", "23 68\n", "21 112\n", "19 17\n", "17 130\n", "15 63\n", "13 103\n", "11 111\n", "Name: Python, dtype: int16" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "s.iloc[::-2]" ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "collapsed": true }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
PythonEnMath
A1035698
B13565135
C1379146
D4724145
E899716
F6426109
H4846111
I164997
J122126100
K6013662
\n", "
" ], "text/plain": [ " Python En Math\n", "A 103 56 98\n", "B 135 65 135\n", "C 13 79 146\n", "D 47 24 145\n", "E 89 97 16\n", "F 64 26 109\n", "H 48 46 111\n", "I 16 49 97\n", "J 122 126 100\n", "K 60 136 62" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# DataFrame是二维,索引大同小异,\n", "df = DataFrame(data = np.random.randint(0,150,size= (10,3)),index=list('ABCDEFHIJK'),columns=['Python','En','Math'])\n", "\n", "df" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": true }, "outputs": [ { "ename": "KeyError", "evalue": "'A'", "output_type": "error", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mKeyError\u001b[0m Traceback (most recent call last)", "\u001b[1;32md:\\python36\\lib\\site-packages\\pandas\\core\\indexes\\base.py\u001b[0m in \u001b[0;36mget_loc\u001b[1;34m(self, key, method, tolerance)\u001b[0m\n\u001b[0;32m 2656\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 2657\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2658\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32mpandas\\_libs\\index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[1;34m()\u001b[0m\n", "\u001b[1;32mpandas\\_libs\\index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[1;34m()\u001b[0m\n", "\u001b[1;32mpandas\\_libs\\hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[1;34m()\u001b[0m\n", "\u001b[1;32mpandas\\_libs\\hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[1;34m()\u001b[0m\n", "\u001b[1;31mKeyError\u001b[0m: 'A'", "\nDuring handling of the above exception, another exception occurred:\n", "\u001b[1;31mKeyError\u001b[0m Traceback (most recent call last)", "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mdf\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'A'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[1;32md:\\python36\\lib\\site-packages\\pandas\\core\\frame.py\u001b[0m in \u001b[0;36m__getitem__\u001b[1;34m(self, key)\u001b[0m\n\u001b[0;32m 2925\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mnlevels\u001b[0m \u001b[1;33m>\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2926\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_getitem_multilevel\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 2927\u001b[1;33m \u001b[0mindexer\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2928\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mis_integer\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mindexer\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2929\u001b[0m \u001b[0mindexer\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;33m[\u001b[0m\u001b[0mindexer\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32md:\\python36\\lib\\site-packages\\pandas\\core\\indexes\\base.py\u001b[0m in \u001b[0;36mget_loc\u001b[1;34m(self, key, method, tolerance)\u001b[0m\n\u001b[0;32m 2657\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2658\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 2659\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_maybe_cast_indexer\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2660\u001b[0m \u001b[0mindexer\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_indexer\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mkey\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmethod\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mmethod\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtolerance\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mtolerance\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2661\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mindexer\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mndim\u001b[0m \u001b[1;33m>\u001b[0m \u001b[1;36m1\u001b[0m \u001b[1;32mor\u001b[0m \u001b[0mindexer\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msize\u001b[0m \u001b[1;33m>\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32mpandas\\_libs\\index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[1;34m()\u001b[0m\n", "\u001b[1;32mpandas\\_libs\\index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[1;34m()\u001b[0m\n", "\u001b[1;32mpandas\\_libs\\hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[1;34m()\u001b[0m\n", "\u001b[1;32mpandas\\_libs\\hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[1;34m()\u001b[0m\n", "\u001b[1;31mKeyError\u001b[0m: 'A'" ] } ], "source": [ "df['A']" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": true }, "outputs": [ { "data": { "text/plain": [ "A 103\n", "B 135\n", "C 13\n", "D 47\n", "E 89\n", "F 64\n", "H 48\n", "I 16\n", "J 122\n", "K 60\n", "Name: Python, dtype: int32" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df['Python']" ] }, { "cell_type": "code", "execution_count": 24, "metadata": { "collapsed": true }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
PythonEn
A10356
B13565
C1379
D4724
E8997
F6426
H4846
I1649
J122126
K60136
\n", "
" ], "text/plain": [ " Python En\n", "A 103 56\n", "B 135 65\n", "C 13 79\n", "D 47 24\n", "E 89 97\n", "F 64 26\n", "H 48 46\n", "I 16 49\n", "J 122 126\n", "K 60 136" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df[['Python','En']]" ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
PythonEnMath
\n", "
" ], "text/plain": [ "Empty DataFrame\n", "Columns: [Python, En, Math]\n", "Index: []" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df['Python':'Math']" ] }, { "cell_type": "code", "execution_count": 26, "metadata": { "collapsed": true }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
PythonEnMath
A1035698
B13565135
C1379146
D4724145
\n", "
" ], "text/plain": [ " Python En Math\n", "A 103 56 98\n", "B 135 65 135\n", "C 13 79 146\n", "D 47 24 145" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df['A':'D']" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": true }, "outputs": [ { "ename": "KeyError", "evalue": "'Python'", "output_type": "error", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mKeyError\u001b[0m Traceback (most recent call last)", "\u001b[1;32md:\\python36\\lib\\site-packages\\pandas\\core\\indexes\\base.py\u001b[0m in \u001b[0;36mget_loc\u001b[1;34m(self, key, method, tolerance)\u001b[0m\n\u001b[0;32m 2656\u001b[0m \u001b[1;32mtry\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 2657\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2658\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32mpandas\\_libs\\index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[1;34m()\u001b[0m\n", "\u001b[1;32mpandas\\_libs\\index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[1;34m()\u001b[0m\n", "\u001b[1;32mpandas\\_libs\\hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[1;34m()\u001b[0m\n", "\u001b[1;32mpandas\\_libs\\hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[1;34m()\u001b[0m\n", "\u001b[1;31mKeyError\u001b[0m: 'Python'", "\nDuring handling of the above exception, another exception occurred:\n", "\u001b[1;31mKeyError\u001b[0m Traceback (most recent call last)", "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mdf\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mloc\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'Python'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[1;32md:\\python36\\lib\\site-packages\\pandas\\core\\indexing.py\u001b[0m in \u001b[0;36m__getitem__\u001b[1;34m(self, key)\u001b[0m\n\u001b[0;32m 1498\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1499\u001b[0m \u001b[0mmaybe_callable\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mcom\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mapply_if_callable\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mobj\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1500\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_getitem_axis\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmaybe_callable\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0maxis\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1501\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1502\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m_is_scalar_access\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mkey\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32md:\\python36\\lib\\site-packages\\pandas\\core\\indexing.py\u001b[0m in \u001b[0;36m_getitem_axis\u001b[1;34m(self, key, axis)\u001b[0m\n\u001b[0;32m 1911\u001b[0m \u001b[1;31m# fall thru to straight lookup\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1912\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_validate_key\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1913\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_get_label\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0maxis\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1914\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1915\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32md:\\python36\\lib\\site-packages\\pandas\\core\\indexing.py\u001b[0m in \u001b[0;36m_get_label\u001b[1;34m(self, label, axis)\u001b[0m\n\u001b[0;32m 139\u001b[0m \u001b[1;32mraise\u001b[0m \u001b[0mIndexingError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'no slices here, handle elsewhere'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 140\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 141\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mobj\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_xs\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mlabel\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0maxis\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 142\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 143\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m_get_loc\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mkey\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mNone\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32md:\\python36\\lib\\site-packages\\pandas\\core\\generic.py\u001b[0m in \u001b[0;36mxs\u001b[1;34m(self, key, axis, level, drop_level)\u001b[0m\n\u001b[0;32m 3583\u001b[0m drop_level=drop_level)\n\u001b[0;32m 3584\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 3585\u001b[1;33m \u001b[0mloc\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mindex\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 3586\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3587\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mloc\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mndarray\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32md:\\python36\\lib\\site-packages\\pandas\\core\\indexes\\base.py\u001b[0m in \u001b[0;36mget_loc\u001b[1;34m(self, key, method, tolerance)\u001b[0m\n\u001b[0;32m 2657\u001b[0m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2658\u001b[0m \u001b[1;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 2659\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_engine\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_maybe_cast_indexer\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2660\u001b[0m \u001b[0mindexer\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mget_indexer\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mkey\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mmethod\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mmethod\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtolerance\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mtolerance\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2661\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mindexer\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mndim\u001b[0m \u001b[1;33m>\u001b[0m \u001b[1;36m1\u001b[0m \u001b[1;32mor\u001b[0m \u001b[0mindexer\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0msize\u001b[0m \u001b[1;33m>\u001b[0m \u001b[1;36m1\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32mpandas\\_libs\\index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[1;34m()\u001b[0m\n", "\u001b[1;32mpandas\\_libs\\index.pyx\u001b[0m in \u001b[0;36mpandas._libs.index.IndexEngine.get_loc\u001b[1;34m()\u001b[0m\n", "\u001b[1;32mpandas\\_libs\\hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[1;34m()\u001b[0m\n", "\u001b[1;32mpandas\\_libs\\hashtable_class_helper.pxi\u001b[0m in \u001b[0;36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001b[1;34m()\u001b[0m\n", "\u001b[1;31mKeyError\u001b[0m: 'Python'" ] } ], "source": [ "df.loc['Python']" ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ "Python 103\n", "En 56\n", "Math 98\n", "Name: A, dtype: int32" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.loc['A']" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
PythonEnMath
A1035698
H4846111
\n", "
" ], "text/plain": [ " Python En Math\n", "A 103 56 98\n", "H 48 46 111" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.loc[['A','H']]" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
PythonEnMath
A1035698
B13565135
C1379146
D4724145
E899716
\n", "
" ], "text/plain": [ " Python En Math\n", "A 103 56 98\n", "B 135 65 135\n", "C 13 79 146\n", "D 47 24 145\n", "E 89 97 16" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.loc['A':'E']" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
PythonEnMath
A1035698
C1379146
E899716
H4846111
J122126100
\n", "
" ], "text/plain": [ " Python En Math\n", "A 103 56 98\n", "C 13 79 146\n", "E 89 97 16\n", "H 48 46 111\n", "J 122 126 100" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.loc[::2]" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "collapsed": true }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
PythonEnMath
K6013662
I164997
F6426109
D4724145
B13565135
\n", "
" ], "text/plain": [ " Python En Math\n", "K 60 136 62\n", "I 16 49 97\n", "F 64 26 109\n", "D 47 24 145\n", "B 135 65 135" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.loc[::-2]" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "collapsed": true }, "outputs": [ { "ename": "TypeError", "evalue": "Cannot index by location index with a non-integer key", "output_type": "error", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)", "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mdf\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0miloc\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;34m'A'\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m", "\u001b[1;32md:\\python36\\lib\\site-packages\\pandas\\core\\indexing.py\u001b[0m in \u001b[0;36m__getitem__\u001b[1;34m(self, key)\u001b[0m\n\u001b[0;32m 1498\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1499\u001b[0m \u001b[0mmaybe_callable\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mcom\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mapply_if_callable\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mobj\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 1500\u001b[1;33m \u001b[1;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m_getitem_axis\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmaybe_callable\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0maxis\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 1501\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 1502\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0m_is_scalar_access\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mself\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mkey\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;32md:\\python36\\lib\\site-packages\\pandas\\core\\indexing.py\u001b[0m in \u001b[0;36m_getitem_axis\u001b[1;34m(self, key, axis)\u001b[0m\n\u001b[0;32m 2224\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 2225\u001b[0m \u001b[1;32mif\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[0mis_integer\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m-> 2226\u001b[1;33m raise TypeError(\"Cannot index by location index with a \"\n\u001b[0m\u001b[0;32m 2227\u001b[0m \"non-integer key\")\n\u001b[0;32m 2228\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n", "\u001b[1;31mTypeError\u001b[0m: Cannot index by location index with a non-integer key" ] } ], "source": [ "df.iloc['A']" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Python 103\n", "En 56\n", "Math 98\n", "Name: A, dtype: int32" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.iloc[0]" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
PythonEnMath
A1035698
F6426109
\n", "
" ], "text/plain": [ " Python En Math\n", "A 103 56 98\n", "F 64 26 109" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.iloc[[0,5]]" ] }, { "cell_type": "code", "execution_count": 36, "metadata": { "collapsed": true }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
PythonEnMath
A1035698
B13565135
C1379146
D4724145
E899716
\n", "
" ], "text/plain": [ " Python En Math\n", "A 103 56 98\n", "B 135 65 135\n", "C 13 79 146\n", "D 47 24 145\n", "E 89 97 16" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.iloc[0:5]" ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
PythonEnMath
K6013662
I164997
F6426109
D4724145
B13565135
\n", "
" ], "text/plain": [ " Python En Math\n", "K 60 136 62\n", "I 16 49 97\n", "F 64 26 109\n", "D 47 24 145\n", "B 135 65 135" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.iloc[::-2]" ] }, { "cell_type": "code", "execution_count": 39, "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
PythonEnMath
A1035698
B13565135
C1379146
D4724145
E899716
F6426109
H4846111
I164997
J122126100
K6013662
\n", "
" ], "text/plain": [ " Python En Math\n", "A 103 56 98\n", "B 135 65 135\n", "C 13 79 146\n", "D 47 24 145\n", "E 89 97 16\n", "F 64 26 109\n", "H 48 46 111\n", "I 16 49 97\n", "J 122 126 100\n", "K 60 136 62" ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
EnMath
A5698
C79146
E9716
H46111
J126100
\n", "
" ], "text/plain": [ " En Math\n", "A 56 98\n", "C 79 146\n", "E 97 16\n", "H 46 111\n", "J 126 100" ] }, "execution_count": 40, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.iloc[::2,1:]" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.5" } }, "nbformat": 4, "nbformat_minor": 2 }